ARTEMIS Call 2013 Project 621439

ALMARVI

ALgorithms, design methods, and MAny-core execution platform for low-power massive data-Rate Video and Image processing

EXECUTIVE summary

ALMARVI provides a cross-domain many-core platform solution, system software stack, tool chain and adaptive algorithms for massive data-rate image/video processing with high energy efficiency. There are mechanisms and support for high adaptability, abstracting from variations in underlying platforms and application behaviour.

CONTRIBUTION to SRA

The ALMARVI project provides the core of solutions for major societal challenges, like affordable healthcare and well-being, green and safe transportation and reduced consumption of power. ALMARVI will:

- > Enable cross-domain re-use and interoperability for different product categories and application domains, thus promoting the cross-fertilisation and reuse of technology results.
- > Facilitate predictable system and product properties and robust solutions.
- > Develop joint hardware-software techniques for resource and power management, yet provide massive data-rate processing and supporting interoperability over crossdomain platforms.

MARKET INNOVATION & impact

Advanced image and video processing systems are becoming a crucial and resource-consuming part of embedded applications in many sectors. This project facilitates the transition from a vertically structured to a horizontally structured market. It:

- > Reduces overall system design cost and time-to-market.
- > Enables low-cost solutions for high-volume markets in different industrial domains.
- Creates new market opportunities, in particular supporting SMEs.

The demonstrators for the healthcare, security/surveillance/ monitoring and mobile use cases will directly lead to marketable applications and products in their respective domains. Integrated releases of the image/video processing algorithm libraries, reference design tools and platforms, and system software stack solutions will be made available, along with their evaluation for the demonstrated use cases. Cross-domain applicability will reduce fragmentation, thus increasing the market share of the European supplier industry.

RELEVANCE & CONTRIBUTIONS to Call 2013

- > Reduce the cost of the system design by 20% 30% through modularity, flexible interfacing, adaptive architecture, execution platform with well-developed tool chains, adaptability and runtime configurability.
- Reduce development cycles by 25% 35% through seamless scalability and integration of > hardware and software components and cross-domain component reuse, cross-domain system software stack, design tools and understanding of relevant system layers.
- > Manage an increase in complexity with a 30% 60% reduction of effort through novel algorithms, architecture, design tools, execution platforms, and system software stack with run-time adaptive resource and power management techniques.
- > Reduce effort and time for re-validation and re-certification by 15% 20% through incremental design, development, testing, integration and validation cycles.
- Cross-sector reusability of Embedded Systems by 20% 50% through system architecture > accounting for the common requirements of different sectors and application domains.

R&D INNOVATION and technical excellence

The key is to leverage the properties of image/video content, while concurrently adapting algorithms and hardware, in order to achieve much higher potential for power savings and to enable massive data-rate processing.

At the Application layer, the goal is to adapt algorithms towards the architectures. At the System Software Stack layer, the adaptive run-time system allocates resources to different applications with simultaneous, energy-efficient execution. At the Hardware layer, the ALMARVI's many-core execution platform provides the computing capabilities to diverse image/video processing applications.

Relevant topics:

- > Automatic extraction of image/video content properties, deriving resource/power requirements of image/video processing algorithms and forwarding them to the hardware layer for enhanced resource and power management.
- > Negotiating between algorithms and hardware, such that in the event that the underlying hardware does not provide the required performance/power efficiency (for instance, due to workload, resource, bandwidth and/or process variations), algorithms self-adapt to curtail their computational requirements, while trading off the quality requirements.
- Identifying and exposing the knobs at algorithmic level, in order to control the algorithmic > computational complexity.
- Objective-1 Enabling Massive Data-Rate Processing
- Objective-2 Achieving Low-Power Consumption
- Objective-3 Composability, Flexibility and Cross-Domain Applicability
- Objective-4 Robustness to Variability

PROJECT *partners*

Turun yliopisto University of Turku

PROJECT COORDINATOR Frank van der Linden

INSTITUTION Philips Healthcare

EMAIL frank.van.der.linden@philips.com

WEBSITE www.almarvi.eu

START 1 April 2014

DURATION 36 months

TOTAL INVESTMENT €16.68 m

PARTICIPATING ORGANISATIONS 16

NUMBER OF COUNTRIES 4