iLAND: mIddLewAre for deterministic dynamically reconfigurable Networked embedded systems

Marisol García –Valls
iLAND Technical Coordination
Universidad Carlos III de Madrid
mvalls@it.uc3m.es
- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
Contents

- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
Introduction

- iLAND is an ARTEMIS call 1 project
- March 1st, 2009 – February 28th, 2012
- 9 partners:
 Spain, The Netherlands, France, Portugal, and U.S.A.

- Coordination: Visual Tools, S.A. (Spain)
- Technical coordination:
 Universidad Carlos III de Madrid (Spain)
Integrated LAND
(cyberphysical inspiration)

- Heterogeneous nodes
- Decoupled interaction
- Configuration changes at any time.
- Timely data transmission
Subsystems of different nature can be far apart.

Subsystems need timely communication to perform cross-processing of data.

Data bulks.

Functionality changes are possible by adding or removing subsystems or individual nodes.

Software-level functionality changes are possible.

Triggers for reconfiguration come from any part of the system at any time.

Real-time operation (data/event transmission and node operation) are a clear added value.
Integrated LAND

- Infrastructured NES
 - Communication guarantees

- Ad-hoc NES
 - No guarantees
Contents

- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
MAIN CHALLENGE:

- Supporting timely reconfiguration
- Decoupled interaction model
- Real-time communication

APPROACH:

- Composition strategies based on services
- Asynchronous communication paradigms (standard-based)
- Vertical view of real-time execution support
- Service-based application architectures
Approach overview

Integrated LAND

- Middleware focus with key issues:
 - Time-deterministic reconfiguration
 - Real-time (and QoS-based) communication

- Service-oriented software model:
 - Application-level services
 - Middleware-level functions/components
Service-based applications

- A service is defined in a simplified way:
 - A self-contained functionality piece of an application that:
 - Has clearly defined input and output interfaces that
 - Resides in a remote node in the network, and that
 - Receives and sends messages

- An application is a set of services in the form of a graph:
Contents

- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
Validation domains

- High-availability video surveillance in critical areas
- Health monitoring system
- Early environmental warning system
High-availability video surveillance in critical areas

- **Supervised control systems**
 - remote control of physical processes
 - to improve the interaction with humans
 - to develop control strategies closer to the human behaviour.

- **Security surveillance in critical areas**
 - Real-time image processing and event detection
 - Real-time transmission of data and alarms
High-availability video surveillance in critical areas

Premises under surveillance

Several geographical premises remotely distributed

DVRT

LAN

Local operator

Video wall

Remote monitoring and control room

Remote operator’s console

Internet

EWC Nürnberg. March 2nd, 2010
© Marisol García Valls (mvalls@it.uc3m.es)
High-availability video surveillance in critical areas

© Universidad Carlos III de Madrid
High-availability video surveillance in critical areas

MAIN FUNCTIONS:

- Video acquisition
- Video image analysis and data extraction
- Video and data transmission
- Presentation of results

THE SAME FUNCTIONS IN DIFFERENT APPLICATION CONTEXTS EXHIBIT DIFFERENT TIMING REQUIREMENTS
High-availability video surveillance in critical areas

NODE TYPES:
- High capacity servers and embedded processors with cameras
- Cameras (image sensing) and other sensors:
 - Limited amount and usually “mono-modal” detection
 - Activated by a reduced set of triggers
 - Relatively simple but robust for the intended detection
 - Little semantics and stateless behavior

COMMUNICATION LINKS
- Wired: servers - cameras
- Wireless: sensors - cameras

CONTROL ALGORITHMS
- Control loops, image processing, etc.
High-availability video surveillance in critical areas

RECONFIGURATION TRIGGERS:

- New requested functionality
- Stop running functionality
- Sensing event
- Alarm detection from image analysis
- Internal monitoring events controlling the infrastructure state:
 - Load balancing
 - Infrastructure optimization decisions
 - Node/functionality crash
High-availability video surveillance in critical areas

RECONFIGURATION RESPONSES:

- Activate/stop video streaming from selected camera(s)
- Activate/stop recording from selected cameras(s)
- Hand over for object-tracking
- Actuation decision upon alarm detection (initiate real-time streaming/recording, generate operator alarm, etc.)
- Hand over responsibility of some cameras to other server nodes (NVRs)
eHealth: Nursing home

MAIN FUNCTIONS:

- Remote monitoring of critical patients
- Alerting medical staff
 - Detect health concerns and inform in real-time
- Physical follow up of patients

DEPLOYMENT:

- Medical equipment
- Room manager
- Control center
RECONFIGURATION VALIDATION

- **External triggers:**
 - New patient enters/leaves a room
 - Health concern
- **Internal triggers:**
 - Overload of some node
 - Some functionality (service) is not available

DURING NORMAL OPERATION:

- The control center staff must receive periodic logs and sporadic events (e.g., alarms).

DURING RECONFIGURATION

- Periodic logs and alarms should continue to be sent at suitable frequency.

- **Actions:**
 - Reconfigure sensing infrastructure for patient follow-up
 - Immediate reporting to medical staff
- Potential of using DAM to detect, diagnose and predict health-related events.
- Network of sensors around the home provide data to identify activities concerning: mobility, self-care, domestic life.
- Analysis of evolution of predefined activity indicators (starting time, duration, continuity, quality of results, etc.) can potentially provide additional information.
Remote monitoring and early warning using public transportation

- Remote monitoring system

- Large unpopulated areas with no access to broadband

- Opportunistic use of the public infrastructure to convey large volumes of sensor data to a central environmental analysis center.

- Large forests, coast lines, water defenses and dikes in floodplains.
Remote monitoring and early warning using public transportation

- It allows
 - Notification of threatening conditions
 - Quick response to prevent disasters or costly damages
- Signals are sent to subscribers in real-time in advance
 - People can take response actions
 - Also suitable automatic response actions are triggered
- Operational phases:
 - Detection; the geographic area equipped with appropriate detection and sensing
 - Analysis; continuous processing of the information discriminating by areas
 - Warning; alert signals to emergency agencies and citizens
ARCHITECTURAL APPROACHES:

- **Centralized analysis;**
 - A central unit collects data from the observed area and merges it with data from other sources (as satellite observations)
 - Prohibitively expensive in unpopulated areas

- **Local analysis;**
 - Local application collects data and decides based on local info.
 - Simplest solution
 - Limited effectiveness since the global view is lost

- **Distributed analysis (the hybrid case);**
 - A local application performs the monitoring and analysis
 - A central application complements the local ones, receiving all monitored data (not necessarily in real-time), and tuning data for the prediction models used by local applications
 - Less restrictions to the communication infrastructure
Wild fire detection

- Several WSNs distributed over a large wild area.
- Total area subdivided into several regions.
- Each region is supervised by a local analysis and processing unit (LAPU).
- Sensors communicate with LAPUs via wireless mesh nodes using one or more hops.
- Connectivity with infrastructure:
 - Opportunistic communication (high throughput, high latency)
 - Low latency and relatively low throughput channel.
RECONFIGURATION VALIDATION:

- Data readings; Local applications *periodically* collect data on temperature, CO₂ concentration, light, pressure, smoke, humidity, etc.

- *Spatial and temporal resolution* are set to detect potential risky situations maximizing the life time of the WSN.

- *Sensor activation*
 - In normal situations, not all sensors are active.
 - Upon alarm detection, activation of sensors and data exchange among LAPUs is done in real-time.
Contents

- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
iLAND architecture

- iLAND Core Functionality
 - Service Management
 - Application Management
 - QoS global communication settings
 - Compositional logic
 - Application control

- iLAND Communication Backbone
 - Data-centric Publish/Subscribe paradigm
 - Standards-based solutions (DDS)
Real-time communication

- Decoupled interaction following data-centric middleware paradigms
 - DDS (Data Distribution Service for Real-Time Systems)
 - ICE (Internet Communications Engine)
 - Observed RT-CORBA and Distributed RTSJ

- Network protocols
 - Real-time communications with Time-Triggered paradigms
 - Combined use of level 3 protocols for QoS communication
iLAND service model

iLAND: middleware for deterministic dynamically reconfigurable NES

EWC Nürnberg, March 2nd, 2010
© Marisol García Valls (mvalls@it.uc3m.es)
TECHNIQUES

- Graph search
 - Complexity threats
- Admission control
 - Correct characterisation of QoS and real-time properties
 - Resource consumption and requirements

APPLICATION DOMAINS

- On-line: fast response (time-bounded solution)
- Off-line: optimization
Graph search vs Admission control techniques

- Graph based composition
 - Heuritic utilization
 - * algorithms
 - Linear complexity algorithms: one way search (no way back)
 - Selective search: partial way back.

- Schedulability analysis
 - Worst-case
 - Average-case
 - Budget assignment
iLAND prototypes

EWC Nürnberg. March 2nd, 2010

© Marisol García Valls (mvalls@it.uc3m.es) iLAND: middleware for deterministic dynamically reconfigurable NES
Contents

- Context and motivation
- Approach overview
- Validation domains
- iLAND architecture
- Time-deterministic reconfiguration
- Conclusions
To summarize...

- iLAND targets networked embedded systems with:
 - Heterogeneous nodes
 - Decoupled interaction
 - Needs for reconfiguration in a timely manner

- Use of standard-based solutions for communications backbone (such as DDS)

- Build reconfiguration functionality on a service oriented structure for applications

- iLAND middleware architecture provides a flexible solution to integrate different node types and meet objectives

- iLAND concepts will be validated in different domains.
iLAND: mIddLeAre for deterministic dynamically reconfigurable Networked embedded systems

Marisol García Valls
Universidad Carlos III de Madrid
mvalls@it.uc3m.es