Research Agenda and sub-programmes on which the first Call of the ARTEMIS-JU will be based
2004 – High-level group publishes “Building ARTEMIS”
 • Describes the importance of Embedded Systems expertise to European industrial competitiveness

2006 – ARTEMIS ETP publishes detailed Strategic Research Agenda
 • Describes technical challenges and novel approaches for R&D
 • Involvement of SMEs
 • Centres of Excellence
 • Financing schemes

January 2007 – ARTEMISIA Association established
 • Takes over custodianship of the ARTEMIS ETP and it SRA
 • Will represent the R&D actors in the future Joint Undertaking

2007/2008 – ARTEMISIA expert groups derive a Research Agenda proposal for the ARTEMIS Joint Undertaking
 • Technical Research roadmap for the JU, taking most significant elements of the ARTEMIS SRA
 • Reference document for the Plans and Calls of the JU
ARTEMIS envisages cross-application solutions

- Common objectives:
 - Sustainability
 - Design Efficiency
 - Ease of Use
 - High added value
 - Time to market
 - Modularity
 - Safety / Security
 - Robustness
 - Competitiveness
 - Innovation
 - Cost reduction
 - Interoperability

- Application Contexts:
 - Industrial
 - Industrial Environments
 - Nomadic Environments
 - Private Spaces
 - Public Infrastructure

- Research Domains:
 - Foundational science & technology
 - Reference Designs & Architectures
 - Seamless connectivity, Middleware
 - System Design methods & tools

- Multidomain, re-usable innovations and research results
The JU Research Agenda proposal considers the expectations of the JU and resulting projects:

- **“Think BIG”**
 - = projects with *appropriate critical mass* and significant societal impact

- **“Socio-Economic Benefits”**
 - = improved industrial efficiency “… to *strengthen European competitiveness* and allow the emergence of new markets and societal applications.”
 - i.e. a focus on key technical issues, solving high-visibility issues with commercially valorisable results

- **“Multi-national”**
 - = considers national/regional strategic priorities

- **“Think Different”**
 - = significant and complementary *added-value* over existing programmes
Society’s needs

APPLICATION DEMONSTRATORS

ARTEMIS JU RA

Sub-Programme B

Meet-In-The-Middle implementation

Business Perspectives

Societal Topic B

Sub-Programme A

Societal Topic A

Industrial View

ARTEMIS ETP VISION

Top-Down

ARTEMISIA SRA

Foundational Science

Research Domains

Innovation Environment

APPLICATION

Bottom-Up

Scientific / Technological view

ARTEMIS – Research for the Public Good
Societal concerns and Business Perspectives

ARTEMIS – Research for the Public Good
Societal concerns and Business Perspectives

ARTEMISIA Working Group SRA

ARTEMISIA ASSOCIATION - 5
ARTEMIS SRA: inputs into the JU-RA

“ARTEMIS SRA”
2006

Reference Designs & Architectures
Seamless Connectivity & Middleware
System Design Methods & Tools
Innovation Environment

Proposal to JU
Research Agenda (RA)

Enrichments
JU Project results should satisfy this “golden zone”

May be a subset of activities within a JU project
ARTEMISIA expert groups identify 8 sub-programmes

- Address well-known societal concerns
 - Environment, safety, healthcare, secure employment, ...
- ... In a viable business context
 - Relevant for new businesses and growth markets

Each sub-programme is elaborated to embrace the ARTEMIS SRA approach
ARTEMIS-JU Research: relationship to the ARTEMIS SRA

ARTEMIS-JU programme addresses the Research Domains and Application Contexts identified in the ARTEMIS SRA

- **Sub-programme A**
- **Sub-programme B**
- **Sub-programme X**
ARTEMIS-JU Research: Main relationships to the ARTEMIS SRA

<table>
<thead>
<tr>
<th>Sub-Programme</th>
<th>DM&T</th>
<th>SC&M</th>
<th>RD&A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods and Processes for Safety-relevant Embedded Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Person-centric Health Management</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Smart Environments and Scalable Digital Services</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Efficient Manufacturing and Logistics</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Computing Environments for Embedded Systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Security, Privacy and Dependability</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Embedded Technology for Sustainable Urban Life</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Human-centric Design of Embedded Systems</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
ARTEMIS SRA, Sub-programmes and the JU Documents
Methods and Processes for Safety-relevant Embedded Systems

- Embedded Systems for **enhanced safety and efficiency**
 - Special relevance for the Transport & Manufacturing sectors
 - Automotive, Aerospace, Plant, …
 - Cost-effective design and integration of new systems used in safety-critical situations

Person-centric Health Management

- Improved **prevention**, care, cure and well-being through Embedded Systems
 - Rising cost of health-care demands new paradigms supported by ICTs
 - Approach: start by keeping people healthy!
ARTEMIS JU Sub-Programmes – II

- **Smart Environments and Scalable Digital Services**
 - New (service / software) architectures for enhanced user experience of (mobile) media and applications
 - Enable the creation of *new services* that bring the “Ambient Intelligence” experience to the mobile user

- **Efficient Manufacturing and Logistics**
 - Embedded Systems supporting *sustainable, competitive, flexible manufacturing*, delivery and support of products over their *complete life-cycle*
Computing Environments for Embedded Systems
- New architectures and design paradigms for embedded systems
- Transversal technology, with positive impact on all ES application domains
 - Processing throughput, low power, …

Security, Privacy and Dependability
- Protect the individual, the supplier and the (data) infrastructure from abuse
 - Increase trust and confidence in the use of technology-based services
- Protect the public at large (infrastructure protection)
- Transversal technology, with positive impact on all ES application domains
Embedded Technology for Sustainable Urban Life
- Sustainable delivery of energy and other utilities
- Improved energy use through cost-effective and intelligent embedded systems

Human-centric Design of Embedded Systems
- New ways to interact with technology
 - ... Or better, for the technology to interact with the user!
- Easier-to-use, friendly electronics for home, work and play
 - Reduces the “digital gap”
- Improved user monitoring and control of industrial and transport systems
 - Eliminate user error, for safer plant, safer car/train/’plane, ...
ARTEMIS SRA relevance: Methods and Processes for Safety-relevant Embedded Systems

- **Reference Design & Architectures**
 - impacting and adapting corresponding standards like AUTOSAR
 - definition of design patterns supporting use of COTS, fault isolation, DASL/ASIL level reduction, similarity arguments in composable and evolvable ways

- **Seamless Connectivity & Middleware**
 - supporting reconfigurable, diagnosable systems with multiple levels of safety, including support for fault containment and deterministic behaviour

- **Design Methods & Tools**
 - large-scale requirement management
 - methods enabling diagnosability
 - component based design, including typical architecture trade-offs, product line requirements and model based designs in the large systems
 - Enabling standardized tool interoperability
 - Providing composable, product-line oriented V&V technologies, including local verification techniques, simulation and model-based V&V

- **Innovation**
 - based around EICOSE Centre of Excellence
ARTEMIS SRA relevance: Person-centric Health Management

- **RD&A**
 - Application context specific reference architecture.
 - Dependability (robustness, security, trust, privacy)
 - Interoperability (standardization)
 - Collaboration of heterogeneous sub-systems

- **SC&M**
 - Bridging and hybrid networking
 - Dynamics in sensor and actuator connectivity (WSN)
 - Dynamic service composition

- **DM&T**
 - Person centric engineering,
 - Validation procedures for trials in virtual labs and larger environments

- **Innovation management**
 - Arrangements for “Living Labs”
 - Arrangements for field trials
ARTEMIS SRA relevance: Smart Environments and Scalable Digital Services

Sub-programme Mapping to SRA

SP3 Focus
- Connectivity, Interoperability, Ad-hoc networking, Usability
- Tools & tool chains for Productivity in design and apps deployment
- Smart space as platform, Scalability and dynamicity

Approach:
- Horizontal ecosystem

SRA Application Contexts
- Nomadic
- Private

SRA Research priorities
- System organization and programming:
 - Device & service discovery
 - Interaction management
 - Ontologies
 - Resource Management
 - Heterogeneity Management
- Design, Implementation & Verification Tools
- Composability:
 - Distributed architectures
 - Ad-hoc architectures
 - Dynamically Reconfigurable systems
ARTEMIS SRA relevance: Efficient Manufacturing and Logistics

- **RD&A**
 - Composability, Predictable Communication,
 - Unreliable Components (constraint),
 - Design for Verification, Diagnostic Service,

- **SC&M**
 - Manufacturing and distributed systems are central to the SC&M “Plant” cluster
 - RFID and sensor-networks important for logistics

- **DM&T**
 - Calls on SP1 for high safety relevance
 - safety certification after IEC 61508

- **Innovation**
 - Foresees participation in CoE’s to benefit from technologies developed for high-volume, hi-rel markets
ARTEMIS SRA relevance: Computing Environments for Embedded Systems

- **RD&A**
 - Composability, through the proposition of adequate support and programming abstractions
 - Architecture dependability and robustness
 - Reference architectures for parallel systems
 - Multi-aspects trade-off in designs, *including performance and energy aspects*
 - Resource management and virtualization
 - Diagnosis and Maintenance
 - Evolvability

- **SC&M**
 - Programming
 - Resource Management
 - Robustness & Diagnosis
 - Provably correct systems
 - Organization & Deployment

- **DM&T**
 - System Architecture, Co-Design, Distribution
 - System Integration & Testing
 - Model-Based Design Flow Optimisation
 - Model-Based Validation & Verification Flow Optimisation
 - Global HW+SW Solution Verification & Optimisation
Reference Designs & Architectures (RD&A)
- Develop security-enabled ES platform and define standards
- Reconfigurable, upgradeable embedded devices in terms of security functions
- Develop metrics for validation of secure embedded systems
- Develop enabling technologies for smart, integrated groups of sensors and actuators aimed at the surveillance and safety in public buildings and areas

System Design Methodologies & Tools (DM&T)
- Lower specific relevance

Seamless Connectivity & Middleware (SC&M)
- Will contribute in reducing the effort and time required for certification/qualification upon changes and during system evolution.
- Applicable in all Application Clusters

Innovation
- Strengthening the European SME sector by creating new market opportunities, improving inter-operability easing access for SMEs to the market of secure ES, and spin-offing for new technologies.
INNOVATION
- Promotes of ‘Open Source Eco-Systems’
- Open systems for connecting digital white goods to a standard home network
- Standard communication technologies and devices for creating a proper bridge between “smart grids” and “smart electric appliances”
ARTEMIS SRA relevance:
Human-centric Design of Embedded Systems

- **RD&A**
 - Important Challenge in ARTEMIS SRA - “introduce new ways of interfacing” and “more intuitive ways for humans to interact with technical systems”

- **SC&M**
 - (low relevance)

- **DM&T**
 - Modelling of user interaction (cognitive)
 - Integration into design flows
Sub-Programme contributors

Special thanks to:

Miguel A. Melchor
Nuno Almeida
Roberto Baldoni
Luca Benini
Francois Bichet
Michael Borth
Ed Brinksma
Francesco Bruschi
Sergio Campos
Antonio Capone
Marco Cesena
Antoine Chailllet
George Chasapis
Marco Cornero
Alain Coutrot
Gerard Cristau
Werner Damm
Jose-Javier De las Heras Bueno
Fabrice Derepas
Jean-Claude Derrien
Jean-Luc Dormoy
Spase Drakul
Christian El Salloum
Erwin Erkinger

Markus Ferch
Alun Foster
Enrico G. Angori
Alain Gefflaut
Rodolphe Gelin
Laila Gide
Mart Graef
Moustapha Hafez
Kai Hansen
Luis Henriques
Bernhard Huber
Nicola Jarossi
Jiri Kadlec
Ivan Kocis
Ondrej Koukol
Tomas Kristofic
Evangelos Ladis
Josefa Laka
Francoise Lammabhi-Lagarrigue
Peter Langendörfer
Vera Lauer
Rudy Lauwereins
Christophe Lécluse
Eric Lenormand

Arnauld Leservot
Johan Lilius
Petri Liuha
Ingemar Ljungdahl
Andreas Lüdtke
Vesa Luukkala
Enrico Macii
Ricardo Maia
Gerard Maniez
Lorenzo Marconi
Fulvio Marcoz
Michael Mrva
Cristina Murillo
Maria Nogarino
Gianluca Palermo
Jon Perez
Chiara Petrioli
Herve Portier
Gerhard Putz
Patrick Pype
Martin Reich
Laura Rocchi
Herbert Roedig
Rajko Sabo
Jürgen Salecker
Tullio Salmon
Lothar Schrader
Milan Schulte
Arne Schulz
Christian Schyr
Martin Senecalouze
Martin Sérédanze
Dimitrios Serpanos
Joseph Sifakis
Rafael Socorro
Juha-Pekka Soininen
Karleheinz Topp
Vlasios Tsiatisis
Ger van den Broek
Frank Van der Linden
Silvia Vecchi
Steve Vestal
Pierre Vielcanet
Andrea Vialelli
Reiner Wichert
Matthew Young

All 95!
END