ARTEMISIA ASSOCIATION

The association for R&D actors in the field of ARTEMIS

Semantics-Based Integration of Embedded Systems Models

András Balogh, OptixWare Research & Development Ltd.

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

Embedded systems

- Typically
 - Networked
 - Heterogeneous
 - Real-time
- Diverse application domains
 - Industrial
 - Transportation
 - Healthcare
 - > Entertainment/mobile
- Common trends
 - Increasing complexity
 - Functionality
 - Connectivity
 - Decreasing time-to-market requirements

Development methodologies for ES

Main trend

- Adoption of model-based development techniques
 - High-level design
 - (semi-) automated synthesis
 - High-level simulation and analysis
- Status depends on the domain

MDD promises

- Reduced development cycle length
- Improving performance
- Better reusability
- Better response to changing requirements
 - Functionality
 - Implementation platform
 - Communication/integration protocols

Current Industrial State-of-the Art

Modeling

- Using UML and its derivatives
 - Only for modeling
 - Limited analysis/synthesis possibilities
- Using low-level descriptions (like FIBEX)
 - For synthesis
 - Often cannot be derived from high level models
- All-in-one solutions
 - Example: AutoSAR (+EAST-ADL2)
 - From high level to configuration modeling
 - Lack several features (like Behavior modeling)

Main problems

- Diverse languages
 - Within an application domain
 - Between domains
 - Hinders reuse and knowledge transfer
- Language integration is unsolved
- Large abstraction gap between modeling and implementation

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

GENESYS Generic Embedded Systems Platform

- EU Framework 7 Project 2008-2009
 - > Aims at the establishment of an embedded systems platform and development method that meets the requirements of ARTEMIS
- Main goals
 - Definition of a cross-domain architectural style for embedded system design
 - Provide a reference architecture template for platform services
 - Establish a model- and quality-driven development methodology
 - > Prototypical evaluation of results

INDEXYS - Industrial Exploitation of the Genesys Cross-domain Architecture

indexys
genes YS cross-domain architecture

- EU Artemis Project 04/2009-09/2011
- Partners: Audi, EADS-IW, NXP, OptXware, Thales RSS,
 TTTech, TU Delft, TU Darmstadt, TU Kaiserslautern, TU Vienna
- Main objective
 - Realize industrial implementations of the GENESYS architectural concepts in different domains
 - Automotive
 - Aerospace
 - Railway
 - Implement a cross-domain tool chain implementing the GENESYS development approach
 - In an open, modular, extensible way
 - Integrating and extending legacy methods and tools

The GENESYS Development Approach

Model-driven

- Primary design artifacts: high-level models
- Strong emphasis on end-to-end modeling
 - From requirements
 - To deployment-ready state
- Quality driven
 - Integrated analysis tools and methods
 - Continuous quality assurance via Verification/validation
- Relies on standards
 - Uses standard modeling languages (primary: UML MARTE)
 - Uses open, extensible platform for the design environment

The GENESYS Development Approach

Open Questions

- The GENESYS approach is strongly component-oriented
 - Interfaces play crucial role
 - » Only the syntax can be defined
 - » Temporal, behavioral, etc. description is not supported
- Legacy integration is a key issue
 - No implementation of legacy model import/export
 - » Semantics-based integration?
- Lack of precise modeling notation
 - UML MARTE
 - » High level
 - » Inconsistent
 - » Too permissive (to serve as basis for implementation)
 - Review note
 - » A GENESYS-specific DSL should be defined

INDEXYS Methodology and Tools

- INDEXYS relies on the main ideas of GENESYS, but
 - It should be integrated with industrial languages and tools
 - Integration of heterogeneous modeling notations
 - > It should scale up to realistic project sizes
 - In-memory model management is insufficient
 - Team collaboration support required
 - Access control
 - Version control
 - It should provide end-to-end traceability (certification support)
 - Models should be handled in an integrated framework
 - > It should support legacy communication and execution platforms
 - Implementing GENESYS applications on legacy platforms

INDEXYS Methodology and Tools

- INDEXYS relies on the main ideas of GENESYS, but
 - > It should be integrated with industrial languages and tools
 - Integration of heterogeneous modeling notations
 - > It should scale up to realistic project sizes
 - In-memory model management is insufficient
 - Team collaboration support required
 - Access control
 - Version control
 - It should provide end-to-end traceability (certification support)
 - Models should be handled in an integrated framework
 - > It should support legacy communication and execution platforms
 - Implementing GENESYS applications on legacy platforms

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

Current Modeling Notations (selection)

- Generic standard notations
 - Used in several different embedded system application domains
 - > SysML
 - > UML MARTE
- Domain specific languages
 - Automotive
 - AutoSAR
 - EAST-ADL2
 - FIBEX
 - Aerospace
 - AADL
 - Safety critical distributed
 - DECOS languages
- Several other languages present

Elements of modeling

- Key modeling stages
 - Architectural modeling
 - Requirements
 - Software components and interfaces
 - Hardware resource modeling
 - System topology modeling
 - System allocation and scheduling
 - Detailed hw/sw configuration
 - Behavioral modeling
 - Behavior of the system
 - » User viewpoint
 - » High level scenario description
 - Behavior of a single component
 - » High-level
 - » Detailed (implementation-ready)
- Modeling aspects
 - Functional
 - QoS (timeliness, dependability, power consumption, etc.)

Analysis of the selected languages

- Varying abstraction level
 - From high-level to implementation-ready modeling
 - > All levels are needed in a typical design process
 - Interconnection of levels?
 - Consistency of levels?
- Modeling aspects only partially covered
 - Non-functional (QoS) aspects typically missing
 - Most important ones
 - Timeliness (as we are dealing with real-time systems)
 - Dependability (for critical systems)
 - Resource consumption (memory, CPU, power)
- Modeling stages
 - No single language is able to describe all areas from requirements to deployment

Analysis of the selected languages (2)

- Software component descriptions similar
 - On syntactical level, models can be easily mapped
 - Semantic description is missing
- Inconsistent approaches to modeling component families
 - > Example: hardware element descriptions
 - AutoSAR 3.0: detailed definition of several types (uP, RAM, ...)
 - AutoSAR 4.0: more generic, user
 - SysML: a generic *component* type (can be specialized)
 - No universal taxonomy of concept available
- Hardware-software integration is different
 - From high level (SysML allocate relationship)
 - To detailed (AutoSAR System mapping)

Analysis of the selected languages (3)

- Communication configuration
 - Different layer count
 - GENESYS single layer (Message)
 - AutoSAR three layers (Signal PDU Frame)
 - FIBEX 2.x two layers (Signal Frame)
 - Different abstraction levels
 - For synthesis, detailed information is necessary
- Platform (middleware) configuration
 - Not supported in several languages

Emerging requirements for new modeling aspects

- Requirement management integration
 - For traceability purposes
 - EAST-ADL2
- Product line and variability support
 - > AutoSAR 4.0
 - > EAST-ADL
- These should also be handled
 - Additional complexity on
 - Model language
 - Model management
 - and tool implementation levels

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

The INDEXYS modeling notation

- Based on the analysis, a new notation has been defined
 - Covers all modeling stages
 - Covers all modeling aspects
 - Has precise semantics for the key areas
 - > All corresponding notations can be mapped to it
- Usage scenarios
 - Modeling backend for modeling tools
 - The user works with the legacy syntax
 - The tools use the common notation (tool interoperability and porting)
 - Common basis for inter-language transformations
 - Used as intermediate model
 - Given n languages, the n^2 transformations reduced to 2*n

Why yet another notation?

- UML and profiles
 - UML is too complex, too generic, too imprecise
 - Profile mechanism proved to be inefficient in many projects
 - Profiles usually are imprecise due to the limitations of the mechanism
- Existing languages
 - None of them covers all aspects
- Important note
 - Our proposal does not aim at being a user-level formalism
 - > The key goal is the tight integration of different languages
 - The target audience is tools and tool vendors

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

- Metamodel of a concrete, legacy language
- Connected to the common metamodel
 - via inheritence/extends relationships
- Acts as a specialization of the common model
- Can contain new concepts
 - new modeling aspects, etc.

- Language specific constraints
- Can extend the basic set with
 - new constraints
 - more strict constraints
- Responsible for all constraints on novel modeling concepts introduced

- Refinement of basic semantics
 - replacing parts of the original (modified)
 - adding new rules (new concepts)
- Also executable

Benefits of the approach

- A common syntactical and semantic basis for all languages
 - Enables tool reuse
 - Enables high-level, interactive simulation
 - > Enables formal verification
 - Eases inter-language mapping
 - Explicit constraints on both sides
 - Precise semantics on both sides
 - → detailed analysis of information loss possible
- By integrating several languages
 - End-to-end modeling is possible
 - End-to-end traceability can be implemented

Main partitions of the common ^notation

- Requirements modeling
- Feature modeling
 - high-level, user visible features
- Software component modeling
 - Components, interfaces, internal behavior
- Hardware resource modeling
 - HW component, peripherals
- System modeling
 - Topology definition
 - HW/SW mapping
 - Communication synthesis
- ECU configuration
 - Detailed configuration of HW and SW modules
- Non-functional properties
 - An extensible framework (based on MARTE) for QoS modeling and analysis

Non-functional property handling

- NFPs can be defined independently of the main metamodel
 - Allows extensibility for new aspects
- A core, consistent framework available
 - Based on the concept of UML MARTE
 - Allowing the uniform treatment of properties
- NFP calculus can be defined as
 - Set of constraints
 - > And operational semantics rules
 - Or by mapping the corresponding entities to an analysis language
- Rationale
 - Existing solutions are inflexible as they constraint the usable NFPs
 - Like DECOS PIM
 - > It is not possible to define all aspects centrally in all details
- A common taxonomy is needed for NFPs!

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

Need for common taxonomies

- Several element hierarchies in modeling
 - HW part types
 - NFPs
 - Physical units
- There is a natural inheritance hierarchy between the instances
 - Example: microcontroller → 32bit MCU → ARM core → Cortex M3
 → LPC17xx series → LPC1768
 - Properties and capabilities inherited from the hierarchy
 - > Tools (configuration, etc.) applicable to sub-trees in the hierarchy
 - An RTOS is applicable for all Cortex M3 processors
 - Currently: long list of types included
- No uniform taxonomy exists
 - Would enrich the semantics of models
 - And the interoperability of tools and design environments

Ontology - overview

- "The term ontology has its origin in philosophy, and has been applied in many different ways. The core meaning within computer science is a model for describing the world that consists of a set of types, properties, and relationship types." Wikipedia
- Similar concept to meta-modeling, but
 - Assumes an open (incompletely modeled) world
 - Has its own calculus
- Utilization
 - Build up ontology for all modeling aspects that need taxonomies
 - Use a single, coherent ontology
 - Like the system of IP addresses, MAC addresses, etc.
 - Requires coordinated development
 - > Elements become uniquely identifiable and *classifiable*

Ontology - benefits

- A single uniform classification of entities
- Systematic definition of properties and relationships
- Direct benefit
 - For tool vendors
 - Tool capabilities can be precisely specified
 - » Target platforms
 - » Supported protocols, etc.
 - Tool interoperability increases
 - For users (system designers)
 - No need for manual remodeling of elements in each project
 - Easier to find appropriate tools
 - Easier to migrate from a component/platform/etc. to an other
 - » The relation of the current and future item can be analyzed

Ontology – open questions

- Maintaining the central ontology
 - Legal problems
 - Organizational problems
 - > Technical problems
- Tool support
 - For ontology maintenance
 - > For (remote) access to it
 - For designers should be built in into design tools
- Current status
 - Prototypical experiments

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

The integrated modeling vision

- A single (invisible) model management system
 - Relies on state-of-the art platform solutions
 - Supports the INDEXYS common meta-model
 - Supports constraint checking and semantics execution
- Users can work with their domain-specific languages
 - Several languages
 - For different design stages
- Migration of models eases
 - Between projects (common ontology)
 - Between application domains (common meta-model)
 - Between tools (common basis)

Implementation Technology

Modeling

- Using the de-facto Eclipse Modeling Framework as front-end for metamodeling
- Using VPM (Visual Precise Meta-modeling) as backend
 - Formal definition of languages
 - Integrated constraint checking support
 - Integrated model execution (via transformations support)
- Model storage OptXware ModelServer
 - Distributed, client-server solution
 - Supports team collaboration by real-time model sharing
 - Supports the use of several modeling languages simultaneously
 - Integrates VIATRA2 one of the most robust model transformation engines

Tool frontend

- Relies on the Eclipse platform
 - Offers form and diagram based model editing
- Integrates legacy tools via tool adapters

The INDEXYS WP1 roadmap

Current status

- Common meta-model work-in-progress
 - First versions available
 - Semantics definition and verification in progress
 - First prototypical tools available

Progress

- > By the end of 2010
 - Final common meta-model available
 - » With mappings to at least GENESYS and AutoSAR
 - An open, free tool suite available
 - » Demonstrating the capabilities of the concept
 - » Extensible
- > By 2Q/2011
 - The Embedded Architect tool suite will be migrated to the new concept
 - » Primary product line of OptXware for embedded system design

Outline

- Embedded systems overview
- Overview of the GENESYS-INDEXYS approach
- Current modeling languages for embedded systems
- Integration concept for modeling notations
- Semantics-based integration
- Ontology-based component catalogues
- Towards cross-domain integrated modeling
- Conclusions

Conclusion

- Current problems in MDD for ES
 - Heterogeneous languages and tools
 - Imprecise semantics of component types, and language elements
 - Inefficient migration between projects, tools, and domains
- The INDEXYS solution
 - Common, precise modeling backend
 - Common ontology for element taxonomies
 - Integrated treatment of models of diverse languages
- Technology
 - Team-collaboration support
 - Robust modeling and model transformation support
 - Using the OptXware ModelServer technology

ARTEMIS
Thank you for your attention

András BALOGH,

INDEXYS WP1 Leader OptiXware Research & Development Ltd.

Tel: +36 1 81 49 057

Mail-to: balogh@optxware.com