Project information

Name
692527 3DAM
Period
Apr 2016 - Mar 2019
Call
ECSEL-JU 2015
Total Partners
17
Members in Project
6
Website
No website
EU Funding
6,51 M Euro

The objective of the 3DAM project is to develop a new generation of metrology and characterization tools and methodologies enabling the development of the next semiconductor technology nodes. As nano-electronics technology is moving beyond the boundaries of (strained) silicon in planar or finFETs, new 3D device architectures and new materials bring major metrology and characterization challenges which cannot be met by pushing the present techniques to their limits. 3DAM will be a path-finding project which supports and complements several existing and future ECSEL pilot-line projects and i...

The objective of the 3DAM project is to develop a new generation of metrology and characterization tools and methodologies enabling the development of the next semiconductor technology nodes. As nano-electronics technology is moving beyond the boundaries of (strained) silicon in planar or finFETs, new 3D device architectures and new materials bring major metrology and characterization challenges which cannot be met by pushing the present techniques to their limits. 3DAM will be a path-finding project which supports and complements several existing and future ECSEL pilot-line projects and is linked to the MASP area 7.1 (subsection More Moore). Innovative demonstrators and methodologies will be built and evaluated within the themes of metrology and characterization of 3D device architectures and new materials, across the full IC manufacturing cycle from Front to Back-End-Of-Line. 3D structural metrology and defect analysis techniques will be developed and correlated to address challenges around 3D CD, strain and crystal defects at the nm scale. 3D compositional analysis and electrical properties will be investigated with special attention to interfaces, alloys and 2D materials. The project will develop new workflows combining different technologies for more reliable and faster results; fit for use in future semiconductor processes.

Project leader

Name
Frank de Jong
Organisation
FEI Electron Optics B.V.
Country
Netherlands